
Instruction Description Example
MOV Moves source operand to destination operand
MOVZX ZX translates to Zero eXtend

A source operand for this instruction has to have length less
than destination's length. That is, MOVZX RAX, BX is correct,

but MOVZX EAX, EBX is not. When moving source to
destination, all destination's bits which didn't overlap with

source's bits, get replaced with zeros, even when they
contained zeros only.

 MOV EBX, 0x12345678
 MOV AX, 0x6666
 MOVZX EBX, AX ; EBX = 0x00006666

MOVSX SX is Sign Extend.
It operates the same way as MOVZX, but it chooses to fill spare
bits with 1's or 0's depending on most significant bit of source.
If source's MSB is 1, then it fills destination with 1's, otherwise

with 0's.

 MOV EBX, 0x12345678
 MOV BX, 0x989A ; 0x98 byte starts with 1, because

 0x98 is 10011000 in binary
 MOVSX EBX, BX ; EBX = 0xFFFF989A, F is 1111

LEA Load Effective Address
This instruction is a bit special. Its second operand(source) is

always bound with brackets. But in fact, it doesn't dereference
memory at source operand. Instead, it only takes the source

address or value.

 LEA RAX, QWORD PTR [RBX] ; RAX=RBX
 LEA RAX, QWORD PTR [0xBADF00D] ; RAX=0xBADF00D

ADD It adds operands and stores result in destination operand
SUB Substract source operand from destination and store result in

destination operand
MUL Takes only 1 operand. Performs unsigned multiplication on

operand and number given in AL, AX, EAX, RAX, depending on
operand's size, and stores result in AX, DX:AX, EDX:EAX,

RDX:RAX respectively. If result can be fit only in one register,
DX, EDX, or RDX stores zero.

I hope this remainder can give you simplified overview:
EDX:EAX = EAX * operand

 MOV AX, 16
 MOV DL, 32
 MUL DL ; AX = 512

DIV Takes only 1 operand. Works similarly as MUL: take dividend
from AX, DX:AX, EDX:EAX, RDX:RAX(depending on operand's
size), divide it by operand(divisor), store result in AL, AX, EAX,

RAX, and put remainder in AH, DX, EDX, RDX, respectively.
Tip for this one is: EAX = EDX:EAX / operand, and store

remainder in EDX

XOR XOR's both operands and stores result in destination.
XORing two bits works this way: if both bits are equal, result of

XOR is 0, if bits are not equal, result is 1

 MOV EAX, 0x34 ; EAX = 0011 0100
 MOV EBX, 0x25 ; EBX = 0010 0101
 XOR EAX, EBX ; EAX = 0001 0001

AND Performs bitwise AND operation on both operands and stores
the result in destination operand.

TEST Does the same as AND, but doesn't store operation result to
destination. The only thing it does is changing flags in EFLAGS
register. Normally this instruction represents condition in the

program's code, and it TESTs it.
OR Performs bitwise OR operation on both operands and stores

the result.
SHR/SHL and
SAR/SAL

Bit shift instructions. SAR and SAL are arithmetic shifts to
right and left, SHR and SHL are logical shifts(I don't know what

H stands for here). These instructions are often used to
perform division(right shift) or multiplication(left shift) by 2.
1st operand specifies data to be shifted, 2nd operand takes

number of bits to shift. With every shift turn depending on shift
direction, MSB/LSB is shifted to carry flag(CF), other bits are

shifted as well. Difference between arithmetic and logical
shifts is what number is left as result. Arithmetic shift "saves"

the sign(minus or plus) of number, while logical shifts don't
care about it. This difference persists only if shift-to-right is

involved, otherwise shifts are interchangeable.

You could use arithmetic shifts to perform signed
multiplication or division, otherwise use logical shift.

Note this is not perfect instruction to perform arithmetical
operations, because it rounds result and makes it look bad.

 MOV AH, 0xFA ; AH = 11111010(250 if unsigned, -6
 if signed)

 SHR AH, 2 ; AH = 00111110(62 if unsigned, the same
 if signed)

But if you used arithmetic shift instead of logical, you would
get different result:

 MOV AH, 0xFA
 SAR AH, 2 ; AH = 11111110(254 if unsigned, -2 if

 signed)

JMP Go-to equivalent in assembly language. It’s equivalent to:
MOV EIP, operand

https://en.wikipedia.org/wiki/Bitwise_operation#XOR
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
https://en.wikipedia.org/wiki/Bitwise_operation#OR
https://en.wikipedia.org/wiki/Bitwise_operation#AND

J(cc) Conditional JMP. This condition triggers if (cc) is 1, there is a lot
of them, you can find the whole list in Intel Manual

NOP This is the instruction which does nothing at all. Hence its
name: No Operation

CALL Call the function and change execution flow It's equivalent to:
PUSH EIP
MOV EIP, operand(function address)

RET Return from function.
This instruction can optionally take one argument. If it is

specified, before exiting from function, argument's value will
be added to ESP register, this is done in order to free up stack

space taken by function arguments

It’s equivalent to:
ADD ESP, operand ; if operand was specified
POP EIP

PUSH Push operand to stack
POP Pop a stack item pointed at by ESP to the operand
LEAVE Instruction to leave current stack frame It's equivalent to:

MOV ESP, EBP
POP EBP

